مدل سازی فرسایش پاشمانی تولید شده در باران ساز با استفاده از سه روش شبکه عصبی مصنوعی، نوروفازی و ماشین بردار پشتیبان

نویسندگان

مهدی بروغنی

تربیت مدرس سمیه سلطانی

دانشگاه اردکان یزد حسن فتح آبادی

دانشگاه گنبد نفیسه قزل سفلو

دانشگاه اردکان یزد سیما پورهاشمی

چکیده

فرسایش پاشمانی باران به عنوان اولین رویداد در فرسایش خاک، حرکت ذرات و کلوخه های خاک را سبب می شود و یک فرآیند مهم در فرسایش محسوب می شود .با توجه به پیچیدگی این فرآیند در طبیعت یکی از راه های شناخت و مدل سازی این فرآیند استفاده از شبیه ساز باران و مطالعه آن در آزمایشگاه می باشد. بدین منظور در این تحقیق اقدام به شبیه سازی مقدار مواد حمل شده در شدت های مختلف بارش و به ازای مقادیر مختلف پلی اکریل امید گردید. پس از اندازه گیری مقدار مواد حمل شده در دوام های و مقادیر مختلف پلی اکریلامید، با استفاده از روش های شبکه عصبی مصنوعی، anfis و svmمدل سازی مواد حمل شده صورت گرفت. نتایج نشان داد در بین سه روش مورد استفاده بهترین مقادیر معیارهای ارزیابی مربوط به روش svm و سپس anfis می باشد. در بین سه دوام مورد بررسی نیز بهترین نتایج مربوط به آزمایش با داوم 30 دقیقه بوده است. نتایج این تحقیق نشان داد در روش anfis با توجه به داده های در دسترس با افزایش تعداد توابع عضویت بیش برازشی اتفاق می افتد. جهت کاهش پیچیدگی مدل و احتمال وقوع بیش برازشی برخی از قوانین حذف گردید. نتایج نشان داده با حذف برخی قوانین عملکرد مدل بهبود یافت.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل‌سازی فرسایش پاشمانی تولید شده در باران‌ساز با استفاده از سه روش شبکه عصبی مصنوعی، نوروفازی و ماشین‌بردار پشتیبان

فرسایش پاشمانی باران به عنوان اولین رویداد در فرسایش خاک، حرکت ذرات و کلوخه های خاک را سبب می‌شود و یک فرآیند مهم در فرسایش محسوب می‌شود .با توجه به پیچیدگی این فرآیند در طبیعت یکی از راه های شناخت و مدل سازی این فرآیند استفاده از شبیه ساز باران و مطالعه آن در آزمایشگاه می‌باشد. بدین منظور در این تحقیق اقدام به شبیه سازی مقدار مواد حمل شده در شدت های مختلف بارش و به ازای مقادیر مختلف پلی اکریل‌...

متن کامل

مدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی

Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of  this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...

متن کامل

مدل‌سازی مقاومت فشاری بتن غلتکی با استفاده از شبکه عصبی مصنوعی، انفیس و ماشین بردار پشتیبان

امروزه از بتن غلتکی در ساخت سد‌ها و روسازی راه‌ها استفاده می‌شود و طی سال‌های اخیر استفاده از این نوع بتن به علت مزایایی چون کوتاه شدن زمان ساخت، در دسترس بودن مصالح مورد نیاز، عملکرد مناسب در نواحی سرد و عمر مفید طولانی گسترش یافته است. مهم‌ترین خاصیت مکانیکی بتن غلتکی، مقاومت فشاری می‌باشد که افزایش آن می‌تواند عملکرد این نوع بتن را بهبود بخشد. حساسیت بتن غلتکی به اجزای تشکیل‌دهنده آن سبب مشک...

متن کامل

شناسایی گردوغبار در تصاویر ماهواره‌ای MODIS با استفاده از روشهای ماشین بردار پشتیبان، شبکه عصبی مصنوعی و درخت تصمیمگیری

یکی از مهمترین بلایای طبیعی که طی سالیان اخیر موردتوجه قرارگرفته، پدیده‌ی گردوغبار است. در سال‌های اخیر این پدیده در ایران ابعاد تازه‌ای گرفته و از یک معضل محلی، به مسئله‌ای ملی تبدیل شده است. شناسایی و تشخیص طوفان گردوغبار اولین مرحله در بررسی و پایش آن می‌باشد. این تحقیق باهدف شناسایی مناطق دارای گردوغبار از تصاویر ماهواره‌ای، در منطقه خاورمیانه انجام گرفته است. در بررسی پدیده گردوغبار تصاویر...

متن کامل

شبیه سازی خودهمبسته جریان حوضه آبریز زرینه رود با استفاده از روش تجزیه پروکراستس و مدل‌های شبکه عصبی مصنوعی و ماشین بردار پشتیبان

پیش­بینی جریان رودخانه­ها در حوضه­های آبریز نقش مهمی در بهره­برداری و مدیریت صحیح منابع آبی دارد. تعیین نوع و تعداد ورودی­ مدل­های تخمین­گر، یکی از مهم­ترین مراحل در پیش­بینی جریان رودخانه­ها می­باشد. بنابراین از روش تجزیه پروکراستس (PA) برای تعیین تعداد ورودی­های موثر استفاده شده است. در این تحقیق پیش­بینی جریان با استفاده از داده­های جریان ماهانه ایستگاه­های آب­سنجی صفاخانه و سنته انجام گرفته...

متن کامل

تهیه نقشه کاربری اراضی دشت عباس ایلام با استفاده از روش‌های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و حداکثر احتمال

یکی از ضروری‌ترین اطلاعات مورد نیاز مدیران و متولیان منابع طبیعی، نقشه‌های کاربری اراضی می‌باشد. در پژوهش حاضر، به‌منظور تهیة نقشة کاربری اراضی دشت عباس از داده‌های رقومی سنجنده (1386)ETM+ استفاده شد. ابتدا تصویر با میانگین خطای مربعات 47/0 پیکسل تصحیح هندسی شد. جهت طبقه­بندی تصویر از روش‌های طبقه­بندی شبکه عصبی مصنوعی، ماشین بردار پشتیبان و حداکثر احتمال استفاده شد. در نهایت، نقشة پوشش اراضی م...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
آبخیزداری ایران

جلد ۱۰، شماره ۳۵، صفحات ۶۵-۷۲

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023